Predicting Students Mathematical Decision Making Using k-Nearest Neighbor Technique

Authors

  • Giyanti Giyanti Universitas Serang Raya, Indonesia
  • Rina Oktaviyanthi Universitas Serang Raya, Indonesia

DOI:

https://doi.org/10.24256/jpmipa.v12i1.3669

Keywords:

Educational Data Mining, K Parameter Value, Mathematical Decision Making, Nearest Neighbor, Prediction Method.

Abstract

Abstract:
Mathematical decision-making abilities are mathematical information processing through risk evaluation and investigation of various possibilities and perspectives. However, the evaluation of mathematical decision-making abilities is still limited to high, medium, and a low level based on test scores and is not predictive naturally. The purpose of this study is to identify the parameter k in the k-nearest neighbor technique, which serves as the nearest-neighbor value determining the mathematical decision-making abilities of students to be predicted. The process of data exploration to prediction is employed by the data mining approach with the k-Nearest Neighbor method. A total of 65 first-year students taking Calculus I included as research samples. The research results show that a parameter value of k=15 is better at predicting the closeness of the mathematical decision-making with an accuracy of 93.33%, associated with the excellent category. The parameter value representing the closeness of the decision-making abilities level among students serves as a reference for teacher predictions to categorize students and create diversified teaching materials.

Abstrak:
Kemampuan pengambilan keputusan matematis merupakan pemrosesan informasi secara matematis melalui evaluasi risiko dan penyelidikan berbagai kemungkinan dan sudut pandang. Namun, evaluasi kemampuan pengambilan keputusan matematis masih terbatas pada level tinggi, sedang dan rendah berdasarkan nilai tes, tidak bersifat prediktif. Penelitian ini bertujuan mengidentifikasi nilai parameter k dengan teknik k-nearest neighbor yang berperan sebagai nilai ketetanggaan terdekat dari kemampuan pengambilan keputusan matematis. Proses eksplorasi data hingga prediksi dilakukan menggunakan pendekatan data mining dengan metode k-Nearest Neighbor. Sebanyak 65 mahasiswa tahun pertama yang mengikuti Kalkulus I sebagai sampel penelitian. Hasil penelitian menunjukkan nilai parameter k=15 yang lebih mampu memprediksi kedekatan tingkat kemampuan pengambilan keputusan matematis dengan akurasi 93,33%, termasuk pada kategori excellent. Nilai parameter tersebut menjadi acuan prediksi pengajar untuk mengkategorikan mahasiswa dan membuat diversifikasi bahan ajar.

Author Biographies

Giyanti Giyanti, Universitas Serang Raya

Department of Mathematics Education

Rina Oktaviyanthi, Universitas Serang Raya

Department of Mathematics Education

References

Ala’raj, Maher, Munir Majdalawieh, and Maysam F. Abbod. “Improving Binary Classification Using Filtering Based on K-Nn Proximity Graphs.†Journal of Big Data 7, no. 1 (March 5, 2020): 15. https://doi.org/10.1186/s40537-020-00297-7.

Ashraf, Mudasir, Majid Zaman, and Muheet Ahmed. “An Intelligent Prediction System for Educational Data Mining Based on Ensemble and Filtering Approaches.†Procedia Computer Science, International Conference on Computational Intelligence and Data Science, 167 (January 1, 2020): 1471–83. https://doi.org/10.1016/j.procs.2020.03.358.

Bagarello, Fabio, Irina Basieva, and Andrei Khrennikov. “Quantum Field Inspired Model of Decision Making: Asymptotic Stabilization of Belief State Via Interaction with Surrounding Mental Environment.†Journal of Mathematical Psychology 82 (February 1, 2018): 159–68. https://doi.org/10.1016/j.jmp.2017.10.002.

Biswas, Sitanath, Trilok Pandey, and Sarada Pati. “Achieving Human Level Reasoning and Decision-Making for Autonomous Systems: An Agent’s Perspective.†International Journal of Computer Science Issues 8 (March 1, 2011).

Dauer, Jenny M., Michelle Lute, and Olivia Straka. “Indicators of Informal and Formal Decision-Making about a Socioscientific Issue.†International Journal of Education in Mathematics, Science and Technology 5, no. 2 (April 30, 2017): 124–38. https://ijemst.net/index.php/ijemst/article/view/114.

Er-Radi, Hicham, Souhaib Aammou, Zakaria Tagdimi, and Ikram Amzil. “Personalizing the Learning Experience: An Adaptive Algorithm Model Based on K-NN,†50–56. Atlantis Press, 2024. https://doi.org/10.2991/978-94-6463-360-3_7.

Farkas-Kis, Máté. “Decision Making in the Shadow of Mathematical Education.†Journal of Decision Systems, December 15, 2022. https://www.tandfonline.com/doi/abs/10.1080/12460125.2022.2087417.

Giyanti, Giyanti, Rina Oktaviyanthi, and Usep Sholahudin. “Classyfying Students Decision Making Ability Using K-Nearest Neighbor for Determining Students Supplementary Learning.†BAREKENG: Jurnal Ilmu Matematika Dan Terapan 17, no. 1 (April 20, 2023): 0559–70. https://doi.org/10.30598/barekengvol17iss1pp0559-0570.

Gorunescu, Florin. “Classification Performance Evaluation.†In Data Mining: Concepts, Models and Techniques, edited by Florin Gorunescu, 319–30. Intelligent Systems Reference Library. Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-19721-5_6.

Hämäläinen, Wilhelmiina, and Mikko Vinni. “Classifiers for Educational Data Mining.†In Handbook of Educational Data Mining. CRC Press, 2010.

Hawes, Zachary, Joan Moss, Beverly Caswell, Jisoo Seo, and Daniel Ansari. “Relations Between Numerical, Spatial, and Executive Function Skills and Mathematics Achievement: A Latent-Variable Approach.†Cognitive Psychology 109 (March 1, 2019): 68–90. https://doi.org/10.1016/j.cogpsych.2018.12.002.

Hidalgo, Juan Isidro González, Silas Garrido T. C. Santos, and Roberto Souto Maior de Barros. “Paired K-NN Learners with Dynamically Adjusted Number of Neighbors for Classification of Drifting Data Streams.†Knowledge and Information Systems 65, no. 4 (April 1, 2023): 1787–1816. https://doi.org/10.1007/s10115-022-01817-y.

Jülicher, Tim. “Education 2.0: Learning Analytics, Educational Data Mining and Co.†In Big Data in Context: Legal, Social and Technological Insights, edited by Thomas Hoeren and Barbara Kolany-Raiser, 47–53. SpringerBriefs in Law. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-62461-7_6.

Kandukuri, Kumar, and A. Sandhya. “Heart Stroke Detection Using KNN Algorithm.†ECS Transactions 107, no. 1 (April 24, 2022): 18385. https://doi.org/10.1149/10701.18385ecst.

Kumar, A., R. Selvam, and K. Kumar. “Review on Prediction Algorithms in Educational Data Mining.†International Journal of Pure and Applied Mathematics 118 (January 1, 2018): 531–36.

Lau, Christina, Anastasia Kitsantas, Angela D. Miller, and Ellen B. Drogin Rodgers. “Perceived Responsibility for Learning, Self-Efficacy, and Sources of Self-Efficacy in Mathematics: A Study of International Baccalaureate Primary Years Programme Students.†Social Psychology of Education 21, no. 3 (July 1, 2018): 603–20. https://doi.org/10.1007/s11218-018-9431-4.

Leuders, Timo, Tobias Dörfler, Juliane Leuders, and Kathleen Philipp. “Diagnostic Competence of Mathematics Teachers: Unpacking a Complex Construct.†In Diagnostic Competence of Mathematics Teachers: Unpacking a Complex Construct in Teacher Education and Teacher Practice, edited by Timo Leuders, Kathleen Philipp, and Juliane Leuders, 3–31. Mathematics Teacher Education. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-66327-2_1.

Levy, Paul S, and Stanley Lemeshow. Sampling of Populations: Methods and Applications. 4th ed. John Wiley & Sons, 2013. https://www.wiley.com/en-us/Sampling+of+Populations%3A+Methods+and+Applications%2C+4th+Edition-p-9781118627310.

Matsane, Lomthandazo, Ashwini Jadhav, and Ritesh Ajoodha. “The Use of Automatic Speech Recognition in Education for Identifying Attitudes of the Speakers.†In 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), 1–7, 2020. https://doi.org/10.1109/CSDE50874.2020.9411528.

Ramaswami, Gomathy, Teo Susnjak, Anuradha Mathrani, James Lim, and Pablo Garcia. “Using Educational Data Mining Techniques to Increase the Prediction Accuracy of Student Academic Performance.†Information and Learning Sciences 120, no. 7/8 (January 1, 2019): 451–67. https://doi.org/10.1108/ILS-03-2019-0017.

Reza, Md. Reshad, Gahangir Hossain, Ayush Goyal, Sanju Tiwari, Anurag Tripathi, Anupama Bhan, and Pritam Dash. “Automatic Diabetes and Liver Disease Diagnosis and Prediction Through SVM and KNN Algorithms.†In Emerging Technologies in Data Mining and Information Security, edited by Aboul Ella Hassanien, Siddhartha Bhattacharyya, Satyajit Chakrabati, Abhishek Bhattacharya, and Soumi Dutta, 589–99. Singapore: Springer Nature, 2021. https://doi.org/10.1007/978-981-33-4367-2_56.

Saeed, Soobia, Afnizanfaizal Abdullah, N. Z. Jhanjhi, Mehmood Naqvi, and Anand Nayyar. “New Techniques for Efficiently K-NN Algorithm for Brain Tumor Detection.†Multimedia Tools and Applications 81, no. 13 (May 1, 2022): 18595–616. https://doi.org/10.1007/s11042-022-12271-x.

Salal, Y. K., S. Abdullaev, and Mukesh Kumar. “Educational Data Mining : Student Performance Prediction in Academic,†2019. https://www.semanticscholar.org/paper/Educational-Data-Mining-%3A-Student-Performance-in-Salal-Abdullaev/b21fa7245581c3baad2d468cb9d706940de7e010.

Sharma, Nitesh Kumar, Aniket Kumar Singh, Shubham Salvi, and Shraddha S. More. “College Kart and K-NN Algorithm Based Placement Prediction.†In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), 1271–76, 2021. https://doi.org/10.1109/ICESC51422.2021.9532987.

Tremblay-Wragg, Émilie, Carole Raby, Louise Ménard, and Isabelle Plante. “The Use of Diversified Teaching Strategies by Four University Teachers: What Contribution to Their Students’ Learning Motivation?†Teaching in Higher Education 26, no. 1 (January 2, 2021): 97–114. https://doi.org/10.1080/13562517.2019.1636221.

Downloads

Published

18-03-2024

How to Cite

Giyanti, G., & Oktaviyanthi, R. (2024). Predicting Students Mathematical Decision Making Using k-Nearest Neighbor Technique. Al-Khwarizmi : Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 12(1), 15–28. https://doi.org/10.24256/jpmipa.v12i1.3669

Citation Check