Pelabelan Lokal Titik Graf Hasil Diagram Lattice Subgrup Zn

Authors

  • Ikhsanul Halikin Program Studi Matematika, Fakultas MIPA, Universitas Jember, Indonesia

DOI:

https://doi.org/10.24256/jpmipa.v6i1.409

Keywords:

Lattice Diagram, Subgroup, Vertex Local Labelling.

Abstract

Abstract

A group is a system that contains a set and a binary operation satisfying four axioms, i.e., the set is closed under binary operation, associative, has an identity element, and each element has an inverse. Since the group is essentially a set and the set itself has subsets, so if the binary operation is applied to its subsets then it satisfies the group's four axioms, the subsets with the binary operation are called subgroups. The group and subgroups further form a partial ordering relation. Partial ordering relation is a relation that has reflexive, antisymmetric, and transitive properties. Since the connection of subgroups of a group is partial ordering relation, it can be drawn a lattice diagram. The set of integers modulo n, , is a group under  addition modulo n. If the subgroups of    are represented as vertex and relations that is connecting two subgroups are represented as edgean , then a graph is obtained. Furthermore, the vertex in this graph can be labeled by their subgroup elements. In this research, we get the result  about the characteristic of the lattice diagram of     and the existence of vertex local labeling.

Abstrak

Grup merupakan sistem yang memuat sebuah himpunan dan operasi biner yang memenuhi 4 aksioma, yaitu operasi pada himpunannya bersifat tertutup, assosiatif, memiliki elemen identitas, dan setiap elemennya memiliki invers. Grup pada dasarnya adalah himpunan dan himpunan itu memiliki himpunan bagian. Jika operasi tersebut diberlakukan pada himpunan bagiannya dan memenuhi 4 aksioma grup maka himpunan bagian dan operasi tersebut disebut subgrup. Grup dan subgrup ini selanjutnya membentuk suatu relasi pengurutan parsial. Relasi pengurutan parsial adalah suatu relasi yang memiliki sifat refleksif, antisimetris, dan transitif. Oleh karenanya, relasi subgrup-subgrup dari suatu grup ini dapat digambar diagram latticenya. Himpunan bilangan bulat modulo n, , merupakan grup terhadap operasi penjumlahan modulo n. Jika subgrup pada  direpresentasikan sebagai titik dan relasi yang menghubungkan dua buah subgrupnya direpresentasikan sebagai sisi, maka diperoleh suatu graf. Titik-titik pada graf ini dapat dilabeli berdasarkan elemen-elemen subgrupnya. Pada penelitian ini diperoleh hasil kajian mengenai karakteristik diagram lattice subgrup  dan eksistensi pelabelan lokal titiknya.

References

Berry, Anne, and Alain Sigayret. “Representing a Concept Lattice by a Graph.” Discrete Applied Mathematics, Discrete Mathematics and Data Mining, 144, no. 1 (November 30, 2004): 27–42. https://doi.org/10.1016/j.dam.2004.02.016.

Fraleigh, John B. A First Course in Abstract Algebra, 7th Edition. 7 edition. Boston: Pearson, 2002.

Gallian, Joseph. “A Dynamic Survey of Graph Labeling.” Electron J Combin DS6 19 (November 12, 2000).

Herstein, I. N. Abstract Algebra 3th (Third) Edition. Example Product Manufacturer, 1996.

Roberts, Charles. Introduction to Mathematical Proofs: A Transition. 1 edition. Boca Raton: Chapman and Hall/CRC, 2009.

Rosen, Kenneth H. Discrete Mathematics and Its Applications Seventh Edition. 7th edition. New York, NY: McGraw-Hill Education, 2011.

Downloads

Published

27-03-2018

How to Cite

Halikin, I. (2018). Pelabelan Lokal Titik Graf Hasil Diagram Lattice Subgrup Zn. Al-Khwarizmi : Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 6(1), 47–56. https://doi.org/10.24256/jpmipa.v6i1.409

Citation Check