Perbandingan Metode Regresi Biasa Dengan Geographically Weighted Regression Dalam Memodelkan Data Columbus di Software R 2.6.1

Authors

  • Alia Lestari STAIN Palopo, Indonesia

DOI:

https://doi.org/10.24256/jpmipa.v1i1.53

Keywords:

Perbandingan, Metode Regresi Biasa, Metode GWR Model Data Columbus

Abstract

Metode regresi merupakan metode statistik yang paling umum digunakan. Metode regresi yaitu metode yang menghubungkan variabel respon dengan variabel bebas dengan hasil keluaran (output) utamanya adalah estimasi dari parameter yang membentuk suatu model tertentu. Metode regresi merupakan metode yang memodelkan hubungan antara variabel respon (y) dan variabel bebas (x1, x2, ... , xp). Model regresi linier secara umum dinyatakan dengan . Tulisan ini akan melihat perbandingan metode regresi biasa dengan metode GWR dalam memodelkan data Columbus di Software R 2.6.1 tentang pengaruh income dan housing terhadap crime.

References

Bocci, C., Petrucci, A., dan Rocco, E. (2006), “An Application of Geographically Weighted Regression to Agricultural Data for Small Area Estimates”, Dipartimento di Statistica “G. Parenti”, Universita degli Studi di Firenze, Italy.

Charlton, M., Fotheringham, S., dan Brunsdon, C. (2006), “Geographically Weighted Regression”, Document ESRC National Centre for Research Methods, NCRM Methods Review Papers.

Chasco, C., Garcia, I., dan Vicens, J. (2007), “Modeling spatial variations in household disposable income with Geographically Weighted Regression”, Munich Personal RePEc Archive Paper No. 1682.

Cressie, N.A.C. (1991), Statistics For Spatial Data, John Wiley & Sons, Inc. United States of America.

Draper, N.R. dan Smith, H. (1992), Analisis Regresi Terapan, Edisi Kedua, PT Gramedia Pustaka Utama, Jakarta.

Fotheringham, A.S., Brundson, C., dan Charlton, M. (2002) “Geographically Weighted Regression: the analysis of spatially varying relationships”, John Wiley & Sons Ltd, England.

Leung, Y. (2000), “Statistical Tests for Spatial Non-Stationarity Based on the Geographically Weighted Regression Model”, Journal, The Chinese University of Hong Kong, Hong Kong.

Mittal, V., Kamakura, W.A., dan Govind, R. (2004), “Geographic Patterns in Customer Service and Satisfaction: An Empirical Investigation”, Journal of Marketing, Vol. 68, Hal. 48-62.

Yu, D. (2004), “Modeling Housing Market Modeling Housing Market Dynamics In The City Of Milwaukee: A Geographically Weighted Regression Approach”, Department of Geography University of Wisconsin-Milwaukee, Wisconsin.

Zhang, L. dan Gove, J.H. (2005), “Spatial Assessment of Model Errors from Four Regression Techniques”, Forest Science,Vol. 51, No. 4, hal. 334-346.

Zhuang, D. (2006), “Spatial Dependence and Neighborhood Effects in Mortgage Lending: A Geographically Weighted Regression Approach”, Paper,University of Southern California, Los Angeles.

Downloads

Published

19-08-2018

How to Cite

Lestari, A. (2018). Perbandingan Metode Regresi Biasa Dengan Geographically Weighted Regression Dalam Memodelkan Data Columbus di Software R 2.6.1. Al-Khwarizmi : Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 1(1), 33–42. https://doi.org/10.24256/jpmipa.v1i1.53

Citation Check