Volume 7 (4), 2025

P-ISSN: 2686-262X; E-ISSN: 2685-9300

The Effect of Marketing Mix on Sales Volume at UD. Rancang Kencono Ponorogo

Marshyanda Putri Nurhidayah¹, Ety Dwi Susanti²

1,2 Universitas Pembangunan Nasional "Veteran" Jawa Timur

Email: marshyandaputri@gmail.com, etydwisantoso@gmail.com

Abstract

Keywords:

product, price, location, promotion, sales volume

Indonesia's economic growth is significantly influenced by small and medium industries (SMEs). In addition to creating jobs, SMEs encourage economic expansion in various regions, including rural areas. The purpose of this study was to analyze the influence of the marketing mix consisting of products, prices, locations, and promotions on sales volume in UD. Rancang Kencono Ponorogo. A type of associative research using a quantitative approach was used in this study. The population and sample are UD. Rancang Kencono employees of 50 people. The saturated sampling technique was used in this study because the population was less than 100. The type of data used is primary data, using data collection techniques through the distribution of questionnaires to UD. Rancang Kencono Ponorogo employees. Using multiple linear analysis techniques through SPSS version 26, to determine the influence of Marketing Mix indicators (Products, Prices, Locations, Promotions) on Sales Volume in UD. Rancang Kencono. The results of the F test study show that, where the Marketing Mix indicators in the form of Products (X1), Price (X2), Location (X3), and Promotion (X4) together have a significant effect on Sales Volume (Y). The results of the study in the T test, only Products (X1) and Price (X2) had a partial significant effect on Sales Volume (Y), while for Location (X3) and Promotion (X4) there was no partial significant effect on Sales Volume (Y). The results of the determination test showed that the Product, Price, Location, and Promotion variables had the ability of 50.9% to explain the Sales Volume variable, while other variables that were not included in this study accounted for the remaining 49.1%.

INTRODUCTION

Small and Medium Industries or abbreviated as SMEs is one of the sectors that makes a significant contribution to Indonesia's economic growth. The role of SMEs is not only limited to providing jobs, but also has a function as the main driver of economic expansion in various regions, especially rural areas. Despite having a smaller business scale when compared to large companies, SMEs are known to have great flexibility in dealing with changes in the market environment and are able to adapt through more innovative production and marketing practices.

As competition increases, companies are required to have the right marketing strategy so that later they can continue to maintain business sustainability. An important factor in creating a competitive advantage is the marketing strategy. This is due to every company activity, both production, distribution, and promotion, which is part of one system that supports each other (Malihah, 2023).

A basic concept in modern marketing strategy is a marketing mix that includes four important elements, namely product, price, distribution, and promotion. These elements form the basic framework for creating value for customers and driving purchasing decisions (Master at al.,

2022). The marketing mix is an important instrument that can determine the success of a company in achieving optimal sales volume.

There is one of the SMEs engaged in processing recycled plastic into cleaning tool component products, namely UD. Rancang Kencono, which is located in Simo Village, Plumpung Hamlet, Slahung District. The products produced are skewer broom lakup, palm oil broom, muffle, mushroom baglock ring, and paralon clam. This product is mostly marketed to cleaning tool craftsmen and industrial consumers in the Ponorogo, Klaten, and other areas in East Java and Central Java. When running his business, UD. Rancang Kencono implements a relatively simple, but quite effective marketing strategy. This strategy consists of competitive pricing tailored to market conditions, distribution through artisan networks and local distribution, as well as personalized word-of-mouth promotion and business community connections.

This sales activity generates revenue for UD. Rancang Kencono. Revenue fluctuations sometimes indicate the state of market demand, the success of the marketing strategy, and the capacity of the business to maintain product quality and continue to reach customers. Monthly income figures at UD. Rancang Kencono from January 2023 to December 2024 provides a more tangible view of the evolution of the financial performance of small and medium industries (SMEs).

Monthly Revenue 2023-2024 UD. Rancang Kencono

Moon	Year 2023	Year 2024
January	IDR 21,500,000	IDR 27,700,000
February	IDR 24,300,000	IDR 25,800,000
March	IDR 22,100,000	IDR 30,200,000
April	IDR 26,800,000	IDR 32,600,000
May	IDR 28,400,000	IDR 31,100,000
June	IDR 29,300,000	IDR 28,800,000
July	IDR 27,900,000	IDR 33,900,000
August	IDR 25,700,000	IDR 35,100,000
September	IDR 30,500,000	IDR 38,600,000
October	IDR 32,800,000	IDR 41,400,000
November	IDR 35,400,000	IDR 43,700,000
December	IDR 31,800,000	IDR 39,100,000
Total	IDR 336,500,000	IDR 408,000,000

Source: Data of UD. Rancang Kencono (2025)

From January 2023 to December 2024, UD. Rancang Kencono shows fluctuations that reflect the dynamics of sales volume over time. The increase in revenue in some months, especially from October to December, indicates that there is greater demand for the products marketed. On the other hand, the decline in revenue in January and February indicates low sales volumes, which usually occur as a result of a slowdown in the market after a long holiday. UD. Rancang Kencono

tends to increase along with the expansion of product distribution and the strengthening of marketing techniques, as can be seen from the overall monthly revenue movement.

METHODS

Types of Research

A type of associative research using a quantitative approach was used in this study. The purpose of this type of research is to ascertain and analyze the relationship between dependent variables and one or more.

Population and Sample

Population

The population in this study consists of the total number of employees at UD. Rancang Kencono Ponorogo Regency. Total UD. Rancang Kencono employees is as many as 50 people.

Sample

The entire population was used as a sample because there were only 50 employees in the population for this study. Saturated sampling is a method used because the population is less than 100 people. As a result, 50 respondents were taken, namely from the total number of UD. Rancang Kencono employees. Participants responded to a questionnaire formed from the sample used in this study.

Data Collection Techniques

Data Type

The type of data used in this study is in the form of primary data. Primary data sources include information collected directly from the field through the dissemination of *google form questionnaires* and data collected from respondents' responses.

Data Source

All employees totaling 50 people were given questions in the form of questionnaires to provide responses to collect research data.

Data Collection Techniques

The data collection technique used in this study is questionnaire/questionnaire. UD. Rancang Kencono employees is the target audience for the questionnaire, which contains responses regarding employees' internal perceptions of the implementation of marketing mix strategies, such as products, prices, locations, and promotions, as well as their relationship with purchasing decisions that impact sales volume.

Data Analysis Techniques

Validity and Reliability Test

1. Validity Test

To combine the results of the validity test, the criteria used are:

- a. If the calculated r value is greater (>) than the r-value of the table, then the questionnaire item is declared valid and can be used.
- b. If the calculated r value is smaller (<) than the table r value, then the questionnaire item is declared invalid and cannot be used.

2. Reliability Test

A Cronbach's Alpha *value* of 0.6 or higher generally means that the questionnaire items have acceptable internal consistency (Darma, 2021). The reliability measurements of *Cronbach's Alpha* 0.6 method are:

- a. $\alpha < 0.6$ then low reliability
- b. $0.6 \le \alpha < 0.8$ then reliability is acceptable
- c. $\alpha > 0.8$ then the reliability is good or strong Classic Assumption Test

1. Normality Test

When deciding which hypothesis to use for the normality test, consider the following:

- a. H0: H0 is accepted if the highest value > the value of the table, then the conclusions drawn are normally distributed.
- b. H1: H1 is accepted if the highest value < the value of the table, then the conclusions drawn are not normally distributed.

c.

2. Multicollinearity Test

When choosing a hypothesis for a multicollinearity test, consider the following:

- a. H0: H0 is accepted if the value r square = VIF > value 10.00, then the conclusion drawn is multicollinearity.
- b. H1: H1 is accepted if the value r square = VIF < value 10.00, then the conclusion drawn is that multicollinearity does not occur.

3. Heteroscedasticity Test

Among the factors considered in establishing a hypothesis for the heteroscedasticity test are:

- a. H0: H0 is accepted if the value of r > the value of significance, then the conclusion drawn is not heteroscedasticity.
- b. H1: H1 is accepted if the value of r < the value of the significance level, then heteroscedasticity.

Multiple Linear Regression Analysis

The equation of multiple linear regression analysis is as follows:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_K X_K + \varepsilon$$

Where:

$$Y$$
 = Bound Variables
 X_1, X_2, X_3, X_K = Independent Variables

$$\beta_0$$
 = Constant Values
 β_1 , β_2 , β_3 , β_K = Regression Coefficients
 ε = Error Standards

A very significant calculation is one in which the statistical value of the test, is within the crucial region, i.e. the region where H0 is rejected. If the test value is within the range where H0 is accepted, then it is said to be insignificant.

Coefficient of Determination (R²)

The result of the adjustment of the determination coefficient to the degree of freedom of the prediction equation is the updated determination coefficient.

- a. R2 = 0, the model does not have predictive ability against variable Y.
- b. R2 = 1, the regression model has perfect predictive ability against Y.
- c. 0 < R2 < 1, The value of the determination coefficient indicates the proportion of variability Y that can be explained by X, the closer to 1 the better the model's ability to explain the relationship.

Hypothesis Test

1. F Test (Simultaneous)

The criteria used in the F test are:

- a. If F_{calculates} > F_{table}, then H₀ is rejected and H₁ is accepted, meaning that Product Variables (X1), Price (X2), Location (X3), and Promotion (X4) simultaneously have a significant effect on Sales Volume (Y).
- b. If F_{calculates} ≤ F_{table}, then H₀ is accepted and H₁ is rejected, meaning that Product Variables (X1), Price (X2), Location (X3), and Promotion (X4) simultaneously have no significant effect on Sales Volume (Y).

2. T Test (Partial)

The criteria used for the T test are:

a. If $t_{calculates} > t_{of the table}$, then H_0 is rejected and H_1 is accepted, meaning that the independent variable (X) partially has a significant influence on the dependent variable (Y).

If t calculates \leq tof the table, then H0 is accepted and H1 is rejected, meaning that the independent variable (X) partially has an insignificant influence on the dependent variable (Y).

RESULTS AND DISCUSSION

Validity and Reliability Test Results Validity Test

In this study, the number of respondents was 50 people with a significance level of 5% or 0.05 resulting in a rtable value of 0.279.

Table 4. 1 Validity Test Results

Variable	Ite ms	Correl ation Coefficien ts	rta ble	informatio n
Products (X1)	X1. 1	0,729	0,2 79	Valid
	X1. 2	0,659	0,2 79	Valid
	X1. 3	0,616	0,2 79	Valid
	X1. 4	0,501	0,2 79	Valid
	X1. 5	0,348	0,2 79	Valid
	X1.	0,630	0,2 79	Valid
Price (X2)	X2. 1	0,690	0,2 79	Valid
	X2. 2	0,852	0,2 79	Valid
	X2. 3	0,663	0 , 2 79	Valid

	X2. 4	0,833	0,2 79	Valid
	X2. 5	0,781	0 ,2 79	Valid
	X2.	0,451	0,2 79	Valid
Location (X3)	X3. 1	0,556	0,2 79	Valid
	X3. 2	0,649	0,2 79	Valid
	X3. 3	0,614	0,2 79	Valid
	X3. 4	0,347	0,2 79	Valid
	X3. 5	0,644	0,2 79	Valid
	X3.	0,622	0,2 79	Valid
	X3.	0,647	0,2 79	Valid
	X3. 8	0,723	0,2 79	Valid
Promotions (X4)	X4. 1	0,750	0,2 79	Valid
	X4. 2	0,693	0,2 79	Valid
	X4. 3	0,502	0 , 2 79	Valid
	X4. 4	0,663	0,2 79	Valid
	X4. 5	0,564	0,2 79	Valid
	X4. 6	0,483	0,2 79	Valid
	X4. 7	0,637	0,2 79	Valid

	X4. 8	0,566	0,2 79	Valid
Sales Volume (Y)	Y.1	0,745	0,2 79	Valid
	Y.2	0,553	0,2 79	Valid
	Y.3	0,674	0,2 79	Valid
	Y.4	0,333	0,2 79	Valid
	Y.5	0,793	0,2 79	Valid
	Y.6	0,750	0,2 79	Valid

Source: SPSS Output Results (2025)

Based on the test results, it shows that:

- 1. The product variable (X1) consists of six question items, namely X1.1 to X1.6. All items have a correlation coefficient value between 0.348-0.729 which indicates that it is greater than 0.279. This result is entirely larger than the table and therefore declared valid.
- 2. The price variable (X2) includes six items from X2.1 to X2.6 with a correlation coefficient between 0.451-0.852 where all items are valid.
- 3. The location variable (X3) has eight items, namely X3.1 to X3.8 with a correlation coefficient value between 0.347-0.723, all items are valid.
- 4. The promotion variable (X4) amounted to eight items, namely X4.1 to X4.8 with a correlation value between 0.483-0.750 where all items were valid.
- 5. The sales volume variable (Y) consists of six items, namely Y1 to Y6 with a correlation between 0.333-0.793 so that all items are declared valid.

Based on the description above, it can be concluded that all research measurement indicators are declared valid because the value of the calculation correlation coefficient is greater than the rtabulation. This reinforces that each statement in the questionnaire is able to measure the construct of variables according to the research objectives.

Reliability Test

Reliability tests are carried out to determine the extent to which research indicators can provide consistent results if used repeatedly under the same conditions. If the value of Cronbach's Alpha >0.60 on an instrument can be declared reliable.

Table 4. 2 Reliability Test Results

o.	Variable	Cronba ch's Alpha	Alpha Minimum	Informa tion
. 1	Products (X1)	0,614	0,60	Reliable
. 2	Price (X2)	0,805	0,60	Reliable

. 3	Location (X3)	0,731	0,60	Reliable
. 4	Promotions (X4)	0,757	0,60	Reliable
5	Sales Volume (Y)	0,736	0,60	Reliable

Source: SPSS Output Results (2025)

Based on the results of the reliability test in the table shows that:

- 1. The product variable (XI) received a Cronbach's Alpha value of 0.614 which exceeded the minimum limit of 0.60 so that it could be declared reliable.
- 2. The price variable (X2) has a Cronbach's Alpha value of 0.805 indicating an excellent and reliable level of instrument consistency.
- 3. The location variable (X3) obtained a Cronbach's Alpha value of 0.731 which is said to be reliable because it is higher than 0.60.
- 4. The promotion variable (X4) gets a Cronbach's Alpha value of 0.757 so that the instrument is reliable and consistent.
- 5. The sales volume variable (Y) obtained Cronbach's Alpha of 0.736 so that it was declared reliable.

Overall, it can be concluded that all variables in this study are reliable because they have an acceptable level of internal consistency. Cronbach's Alpha value >0.60 so that the research instrument is suitable for consistent use in this study.

Classic Assumption Test Normality Test

The normality test was used to find out whether the residual data in the distributed regression model was normal or not. The normality test is important because one of the classic assumptions in linear regression is that the residual must be normally distributed in order for the results of the analysis to be reliable. In this study, the normality test was carried out using the One-Sample Kolmogorov-Smirnov Test with a significance level of 5% (α =0.05) which means a confidence level of 95%.

Upotopdordiza

Table 4. 3 Normality Test Results

One-Sample Kolmogorov-Smirnov Test

			d Residual
N			50
Normal Parameters ^{a,b}	Mean		.0000000
	Std. Deviation		1.21961551
Most Extreme Differences	Absolute		.055
	Positive	.050	
	Negative		055
Test Statistic			.055
Asymp. Sig. (2-tailed) ^c			.200 ^d
Monte Carlo Sig. (2-tailed) ^e	Sig.		.965
	99% Confidence Interval	Lower Bound	.960
		Upper Bound	.969

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.
- d. This is a lower bound of the true significance.
- e. Lilliefors' method based on 10000 Monte Carlo samples with starting seed 2000000.

Source: SPSS Output Results (2025)

Based on the test results, it can be seen that the Asymp value is obtained. Sig. (2-tailed) is 0.200. This value is greater than the significance level of 0.05 which indicates that the residual data is normally distributed. So it can be said that the regression model used in this study has met the assumption of normality and is suitable for use in future testing.

Multicollinearity

The multicollinearity test was carried out to find out whether there is a strong relationship in the regression model such as a high correlation between independent variables. A good regression model is a model that is free from the problem of multicollinearity, where there is no high correlation between free variables. The indicators used in this case are the Tolerance and Variance Inflation Factor (VIF) values. A variable can be said to have no multicollinearity if the Tolerance value is greater than 0.10 and the VIF value is less than 10.

Table 4. 4 Multicollinearity Test Results

Variable	Collins	Information	
	Toleranc e VIVID		
Products (X1)	0,918	1,089	Non- Multicolinierity
Price (X2)	0,874	1,144	Non- Multicolinierity

Location (X3)	0,874	1,144	Non- Multicolinierity
Promotio ns (X4)	0,931	1,074	Non- Multicolinierity

Source: SPSS Output Results (2025)

Based on the table of multicollinearity test results in the table above, it can be seen that all independent variables have a Tolerance value greater than 0.10 and a VIF value less than 10. This indicates that the free variables do not have too strong relationships or excessive interdependence. So that each variable can still provide its own explanation of the bound variable without interfering with each other.

Heteroscedasticity

The purpose of the heteroscedasticity test is to find out whether the regression model occurs in the variance of the variant from the residual in one observation with the other. A good regression model is one that does not experience heteroscedasticity (homocedasticity) in the sense that the residual variance is constant at all predicted values. One of the methods that is often used in detecting heteroscedasticity is to look at the scatterplot between the prediction value and the residual.

Scatterplot
Dependent Variable: Y

Dependent Variable: Y

-2 -1 0 1 2 3

Figure 4. 1 Heteroscedasticity Test Results

Source: SPSS Output Results (2025)

Regression Standardized Predicted Value

Based on the scatterplot in the image above, it can be seen that the residual points are randomly spread above or below the number 0 on the Y axis without forming a certain regular pattern, such as a wavy, narrowing, or widening pattern. This random distribution of points illustrates that the residual variant is constant so there is no indication of heteroscedasticity in the regression model.

Multiple Linear Regression Analysis

Table 4. 5 Multiple Linear Regression Analysis

Coefficients^a

		Unstandardized Coefficients B Std. Error		Standardized Coefficients			Collinearity	Statistics
Model				Beta	t	Sig.	Tolerance	VIF
1	(Constant)	17.948	4.978		3.605	.001		
	X1	283	.131	235	-2.156	.036	.918	1.089
	X2	.603	.093	.728	6.517	.000	.874	1.144
	Х3	038	.097	044	397	.693	.874	1.144
	X4	.037	.084	.048	.441	.662	.931	1.074

a. Dependent Variable: Y

Source: SPSS Output Results (2025)

Based on the results of the above considerations, the multiple linear regression equation is obtained as follows:

$$Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + e$$

$$Y = 17,948 + (-0,283)X_1 + 0,603X_2 + (-0,038)X_3 + 0,037X_4 + e$$

The interpretation of the regression above is as follows:

- 1. Constant (a) has a value of 17.948 indicating that if the variables Product (X1), Price (X2), Location (X3), and Production (X4) are valued at 0, then the predicted Sales Volume value (Y) is 17.948.
- 2. Product (X1) to Sales Volume (Y) Product coefficient value (\(\beta\)1) is -0.283 and has a negative regression coefficient sign. This means that when there is an increase in the value of the Product variable (X1), the Sales Volume (Y) will decrease.
- 3. Price (X2) to Sales Volume (Y) Price coefficient value (\(\beta\)2) is 0.603 and has a sign of a positive regression coefficient. This means that when there is an increase in the value of the Price variable (X2), the Sales Volume (Y) will also increase.
- 4. Location (X3) to Sales Volume (Y) The value of the Location coefficient (B3) is -0.038 and has a sign of a negative regression coefficient. This means that when there is an increase in the value of the Location variable (X3), the Sales Volume (Y) will decrease.
- 5. Promotion (X4) to Sales Volume (Y) The value of the Promotion coefficient (β4) is 0.037 and has a sign of a positive regression coefficient. This means that when there is an increase in the value of the Promotion variable (X4), the Sales Volume (Y) will also increase.

Coefficient of Determination Test (R²)

To determine the extent to which independent factors explain the variation in the dependent variable, a determination coefficient (R²) test was used. The value of R² ranges between 0 and 1. The closer the value is to 0, the more limited the ability of the independent variable to explain the dependent variable, and the closer the value is to 1, the greater the effect it has on the dependent variable. Therefore, this test provides an overview of how well the observed phenomenon can be explained by the regression model used.

Table 4. 6 Coefficient Determination Test

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
1	.714 ^a	.509	.466	1.273	1.513

a. Predictors: (Constant), X4, X1, X2, X3

b. Dependent Variable: Y

Source: SPSS Output Results (2025)

Based on the Table, it is clear that the value of R2 = 0.509 indicates that the Product, Price, Location, and Promotion variables have a 50.9% ability to explain the Sales Volume variable, while other variables not included in this study account for the remaining 49.1%.

Hypothesis Testing F Test (Simultaneous Test)

Table 4. 7 Simultaneous Tests

		A	NOVA			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	75.694	4	18.924	11.684	.000 ^b
	Residual	72.886	45	1.620		
	Total	148.580	49			

a. Dependent Variable: Y

b. Predictors: (Constant), X4, X1, X2, X3

Source: SPSS Output Results (2025)

Based on the table above, the results of the calculation of the F test or simultaneous test are:

1. Hypothesis

H0: β 1; β 2; β 3; β 4 = 0 means that there is simultaneously no significant effect between Products (X1), Price (X2), Location (X3), and Promotions (X4) on Sales Volume (Y).

H0: β 1; β 2; β 3; β 4 \neq 0 means that there is simultaneously a significant influence between (X1), Price (X2), Location (X3), and Promotion (X4) on Sales Volume (Y).

2. Determine a significant level (α) of 5% or 0.05 using the following formula:

$$df = F(n-k-1) = F(4;50-4-1) = (4;45) = 2,58$$

Ftable is 2.58 and Fcal result is 11.684

The F test, shows that the Fcal value is 11.684 with a probability value (sig) = 0.000. The value of Fcal (11.684) > Ftable (2.58) and the value of sig is smaller than the probability value of 0.05 or the value of 0.000 < 0.05, then H1 is accepted and H0 is rejected. It can be concluded that the variables (X1), Price (X2), Location (X3), and Promotion (X4) have a simultaneous and significant effect on the Sales Volume (Y) in UD. Rancang Kencono.

T Test (Partial Test)

Partial tests or t-tests are a means of testing to find out whether individual independent variables have an effect on dependent variables. The table is obtained with the formula Df = n-k-1 and α = 0.05. Df = n-k-1 = (50 - 4 - 1) = 45, thus obtaining a ttable result of 2.014. In this study, the t-test contains the results of data processing as follows:

- 1) H0 is accepted if $t_{calculates} < t_{table}$ at $\alpha = 5\%$ or 0.05
- 2) H0 is subtracted if $t_{computes} > t_{table}$ at $\alpha = 5\%$ or 0.05

The following are the results of the t-test in this study:

Table 4. 8 Partial Test

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	17.948	4.978		3.605	.001		
	X1	283	.131	235	-2.156	.036	.918	1.089
	X2	.603	.093	.728	6.517	.000	.874	1.144
	Х3	038	.097	044	397	.693	.874	1.144
	X4	.037	.084	.048	.441	.662	.931	1.074

Source: SPSS Output Results (2025)

Based on table 4.19 above, the results of the calculation of the T test or partial test are:

1. Effect of Products (X1) on Sales Volume (Y)

Product (X1) has a tcal value of 2.156 and a ttable value of 2.014 with a significance value of 0.036 < 0.05 where the tcount > ttable (2.156 > 2.014) or sig t < 5% (0.036 < 0.05), then the result can be said that H0 is rejected and H1 is accepted. It can be concluded that the Product variable (X1) has a significant partial effect on Sales Volume (Y) in UD. Rancang Kencono.

2. Effect of Price (X2) on Sales Volume (Y)

Price (X2) has a total value of 6.517 and the value of ttable is 2.014 with a significance value of 0.000 < 0.05 where the tount is > ttable (6.517 > 2.014) or sig t < 5% (0.000 < 0.05), then the result can be said that H0 is rejected and H1 is accepted. It can be concluded that the Price variable (X2) has a significant effect on the Sales Volume (Y) in UD. Rancang Kencono.

3. Effect of Location (X3) on Sales Volume (Y)

Location (X3) has a teal value of 0.397 and a ttable value of 2.014 with a significance value of 0.693 > 0.05 where the tcount < ttable (0.397 < 2.014) or sig t > 5% (0.693 > 0.05), then the result can be said that H0 is accepted and H1 is rejected. It can be concluded that the Location variable (X3) does not have a significant effect partially on Sales Volume (Y) in UD. Rancang Kencono.

4. Effect of Promotion (X4) on Sales Volume (Y)

Promotion (X4) has a tcal value of 0.441 and a ttable value of 2.014 with a significance value of 0.662 > 0.05 where tcal < ttable (0.441 < 2.014) or sig t > 5% (0.662 > 0.05), then the result can be said that H0 is accepted and H1 is rejected. It can be concluded that the Promotion variable (X4) does not have a significant effect partially on the Sales Volume (Y) in UD. Rancang Kencono.

Discussion

The Simultaneous Effect of Products (X1), Price (X2), Location (X3), and Promotions (X4) on Sales Volume (Y)

Based on the results of the F test conducted simultaneously, which showed the presence of simultaneous pullers as shown by Fcount (11.684) and Ftabel (2.58), the null hypothesis (H0) was rejected and H was accepted. Thus, products, prices, locations, and promotions have a significant influence on sales volume simultaneously.

It has been proven that the combination of four factors of the Marketing Mix, namely Product, Price, Location, and Promotion, has an influence on UD. Rancang Kencono Sales Volume. This shows that a structured marketing strategy is the cause of increased sales, not just supported by one component. Quality products, Competitive prices, Accessible Location, and effective Promotions, work together to increase the attractiveness of the company and increase the Sales Volume.

The results of this study show that factors in the product marketing mix, price, location, and promotion, all significantly affect sales volume simultaneously. In line with the research of Moekti T. Aulia, *et al.* (2022) entitled "Marketing Mix Strategy in Increasing Sales Volume at Gresik's "Kedai Aneka Jus"," which emphasizes that marketing mix strategies have an important role in increasing sales.

Effect of Product (X1) on Sales Volume (Y)

Based on the results of the hypothesis test, the value of the product variable is 2.156 and the table value is 2.014, with a significance value of 0.036. Where the tcount > ttable (2.156 > 2.014) or sig t < 5% (0.036 < 0.05). As a result, H0 is rejected and H1 is accepted, indicating a significant positive influence. Therefore, it can be concluded that the product variable (X1) has a significant partial effect on sales volume.

From the results of this study, it can be concluded that the Product variable (X1) partially has a significant influence on the Sales Volume (Y) of UD. Rancang Kencono. This means that the better the quality, variety, and size of the products offered, the greater the opportunity to increase the company's sales volume.

In accordance with the research of Mastar S., et al. (2022) entitled "The Influence of Marketing Mix on Sales Volume (Case Study of Rice 77 at UD. Ask Dhefyan of Desa Baru Tahan North Moyo District)," the product variable indicator (X1) in the marketing mix has a significant partial effect on sales volume (Y).

Effect of Price (X2) on Sales Volume (Y)

Based on the results of the hypothesis test, the value of the price variable is 6.517 and the table value is 2.014, with a significance value of 0.000. Where the tcount > ttable (6.517 > 2.014) or sig t < 5% (0.000 < 0.05). As a result, H0 is rejected and H1 is accepted, indicating a significant positive influence. Therefore, it can be concluded that the price variable (X2) has a partial significant effect on sales volume (Y).

According to the results of the study, the Price variable (X2) has been proven to have a significant effect on UD. Rancang Kencono's Sales Volume (Y). This indicates that the more precise the pricing strategy applied, both in terms of affordability and conformity with product quality, the higher the sales level that can be achieved.

The results of this study are relevant to the research results of Christianti C. Cilvia, et al. (2022) entitled "Analysis of the Influence of Marketing Mix on the Sales Volume of Lampung Milk Banana Chips," where the price variable indicator (X2) in the marketing mix has a significant partial effect on sales volume (Y).

Effect of location (x3) on sales volume (y)

Based on the results of the hypothesis test, the tcal value of the location variable is 0.397 and the ttable value is 2.014, with a significance value of 0.693. Where the tcount < ttable (0.397 < 2.014) or sig t > 5% (0.693 < 0.05). As a result, H0 is accepted and H1 is rejected, indicating the absence of significant influence. Therefore, it can be concluded that the location variable (X3) does not have a partial significant effect on sales volume (Y).

Based on the results of the study, the Location variable (X3) did not have a significant influence on UD. Rancang Kencono's Sales Volume (Y). This shows that the existence of a business location is not the main factor that determines the level of sales, because consumers are more influenced by other aspects outside the company's location.

The results of this study are in line with the results of the research of Handayani P. Abadi & Musa M. Ichwan (2023) entitled "The Effect of Marketing Mix on Sales Volume of Suzuki Ertiga Cars at PT. Megahputra Sejahtera Pettarani Makassar Branch" where the Location variable indicator (X3) in the marketing mix did not have a significant partial effect on sales volume (Y).

Influence of Promotion (x4) on Sales Volume (Y)

Based on the results of the hypothesis test, the location variable tcal value is 0.441 and the table value is 2.014, with a significance value of 0.662. Where the tcount < ttable (0.441 < 2.014) or sig t > 5% (0.662 < 0.05). As a result, H0 is accepted and H1 is rejected, indicating the absence of significant influence. Therefore, it can be concluded that the promotion variable (X4) does not have a partial significant effect on sales volume (Y).

The results of this study show that the Promotion variable (X4) does not have a significant effect on the Sales Volume (Y) of UD. Rancang Kencono. This means that the promotional activities carried out are not strong enough to encourage an increase in sales, so promotional efforts need to be evaluated and adjusted so that the results are more optimal.

In accordance with the results of Murti N. Restu's research, et al. (2023) entitled "The

Effect of Marketing Mix on Sales Volume of Tempeh Chips," where the indicator of the promotional variable (X4) in the marketing mix does not have a partial significant effect on sales volume (Y).

CONCLUSION

Based on the results of the research analysis test, it can be concluded that:

- 1. Hypothesis 1 (H1) is accepted so that it can be stated that the variable indicators of the Marketing Mix in the form of Products, Price, Location, and Promotions simultaneously have a significant effect on Sales Volume in UD. Rancang Kencono.
- 2. Hypothesis 2 (H2) is accepted so that it can be stated that the Product partially has a significant effect on the Sales Volume in UD. Rancang Kencono.
- 3. Hypothesis 3 (H3) is accepted so that it can be stated that the Price partially has a significant effect on the Sales Volume in UD. Rancang Kencono.
- 4. Hypothesis 4 (H4) is rejected so that it can be stated that the Location partially does not have a significant effect on the Sales Volume in UD. Rancang Kencono.
- 5. Hypothesis 5 (H5) is rejected so that it can be stated that the Promotion does not have a significant effect on the Sales Volume in UD. Rancang Kencono. UD.

REFERENCES

- Adoe, V. S. (2024). SALES MANAGEMENT & ENTREPRENEURSHIP BOOK. Title: CV. Science Techno Direct.
- Christianti, C. C., Suswatiningsih, T. E., & Trimerani, R. (2022). ANALYSIS OF THE INFLUENCE OF MARKETING MIX ON THE SALES VOLUME OF LAMPUNG MILK BANANA CHIPS. Journal of Integrated Agribusiness, 16(2), 1-16.
- Handayani, P. A., & Musa, M. I. (2023). THE EFFECT OF MARKETING MIX ON SALES VOLUME OF SUZUKI ERTIGA CARS AT PT. MEGAHPUTRA SEJAHTERA PETTARANI MAKASSAR BRANCH. Economic and Business Journal, 1(2), 113-124.
- Hendrayani, E. S. (2021). MARKETING MANAGEMENT (Basics & Concepts). Bandung: CV. INDONESIAN SCIENCE MEDIA.
- Malihah, L. (2023). ANALYSIS OF THE MARKETING MIX IN THE WADAI KELEMBEN INDUSTRIAL HOME, TAMBAK ANYAR VILLAGE, MARTAPURA. Journal of Economics, 14(2), 203-214.
- Mastar, S., Angkasa, M. A., & Jullianti, A. (2022). THE EFFECT OF MARKETING MIX ON SALES VOLUME (CASE STUDY OF RICE 77 AT UD. ASK DHEFYAN, NEW TAHAN VILLAGE, NORTH MOYO DISTRICT). Journal of Agricultural Socio-Economics FP. WHAT, 2(1), 8-16.
- Moekti, T. A., Khasanah, M., & Hidayat, R. (2022). MARKETING MIX STRATEGY IN INCREASING SALES VOLUME AT "KEDAI ANEKA JUS" GRESIK. Indonesian Business Journal, 13(1), 44-59.

- Murti, N. R., Sundari, R. S., & Heryadi, D. Y. (2023). THE EFFECT OF THE MARKETING MIX ON THE SALES VOLUME OF TEMPEH CHIPS. Journal of Agribusiness Insight Scientific Community Thought, 9(2), 2570-2584.
- Purwantinah, A., & Kartiningsih, N. B. (2023). THE BASICS OF MARKETING. South Jakarta: Ministry of Education, Culture, Research, and Technology.
- Zulfa, I., & Hariyani, T. (2022). Implementation Of The 7P Marketing Mix In Increasing Sales Volume Of Effective SMEs In Kediri Regency During The Covid-19 Pandemic. Journal of Multidisciplinary Madani, 2(1), 299-314.