

The Influence of Influencer Marketing, Electronic Word of Mouth (e-WOM), and Brand Awareness on the Decision to Play Roblox in Mataram City

Adinda Melisa Putri¹, Akhmad Saufi²

^{1,2}Management, Faculty of Economics and Business, University of Mataram, West Nusa Tenggara, Indonesia

E-mail: adindamelisaaa@gmail.com, akhmad.saufi@unram.ac.id

Abstract

Keywords:

Brand Awareness, E-Wom, Influencer Marketing, Playing Decision, Roblox

The development of the online gaming industry in Indonesia prompted this study to analyze the influence of influencer marketing, electronic word of mouth (e-WOM), and brand awareness on the decision to play Roblox in Mataram City. The study aims to test the causal relationship between the three independent variables and the dependent variable using a causal associative quantitative approach. The population is the young generation of active Roblox players in Mataram, with a sample of 97 respondents selected purposively (aged 18-25 years). The instrument, a 5-point Likert questionnaire, was tested for validity ($r > 0.196$) and reliability ($\alpha > 0.60$), analyzed using SPSS multiple linear regression after classical assumption testing. The results showed a significant simultaneous effect ($R^2 = 0.693$; $F = 69.891$, $p < 0.05$) and positive partial (influencer marketing $\beta = 0.233$ $p = 0.012$; e-WOM $\beta = 0.480$ $p = 0.000$; brand awareness $\beta = 0.313$ $p = 0.000$), with e-WOM being the most dominant. The conclusion states that all three factors effectively drive gaming decisions, different from physical product studies, with implications for regional digital marketing strategies.

INTRODUCTION

The development of digital technology has driven the growth of the online gaming industry in Indonesia, particularly among the younger generation, who consider gaming a part of their lifestyle and social interaction. Indonesia is listed as one of the largest gaming markets in Southeast Asia, with the mobile gaming segment dominating due to increasing internet penetration and smartphone usage (IMARC Group, 2024; Newzoo, 2024). Platforms like Roblox, launched in 2006, have seen a surge in popularity through social media exposure, with global Daily Active Users (DAU) increasing from 14 million in the fourth quarter of 2018 to over 110 million in the second quarter of 2025 (Statista, 2025; App Annie, 2024).

Digital influencers and content creators play a crucial role in introducing Roblox through gameplay, tutorial, and entertainment content, thus shaping positive perceptions among young audiences. Digital marketing strategies such as influencer marketing effectively influence consumer attitudes through persuasive communication and high trust in influencers (Kotler & Keller, 2016; Kim & Kim, 2022). Furthermore, electronic word of mouth (e-WOM) from user interactions on

social media strengthens the authenticity of recommendations, while repeated exposure increases brand awareness, which underpins gaming decisions (Hennig-Thurau et al., 2004; Keller, 2013).

Although several studies have examined the influence of influencer marketing, e-WOM, and brand awareness on consumer decisions, most have focused on physical products or competitive games, rather than community-based games and user-generated content like Roblox. Previous research often found insignificant effects of these factors in non-digital contexts, such as the purchase of physical products (Oktaviani et al., 2025; Saputra et al., 2024). This creates a gap, as Roblox's characteristics, which emphasize social interaction and user creativity, differ from those of conventional products (Febrianto, 2025; Pratiwi & Sari, 2023).

Mataram City, the capital of West Nusa Tenggara, boasts high internet and social media penetration among young people, yet empirical research on digital marketing factors influencing Roblox play decisions remains limited locally. Previous studies have rarely explored this regional context, leaving a gap in understanding the specific dynamics of the gaming community in the region (Kencana & Krisprimandoyo, 2024; Wati et al., 2025). This gap is all the more relevant given the differences in online gaming consumer behavior in non-metropolitan areas compared to large cities.

This study aims to analyze the influence of influencer marketing, e-WOM, and brand awareness on the decision to play Roblox in Mataram City using a quantitative causal associative approach. The research's urgency lies in its practical contribution to game developers and digital marketers in designing effective social media-based promotional strategies in the Indonesian regional market. The research's novelty includes filling a gap by focusing on community-based games in the local context of Mataram, which offers contextual insights different from previous studies of physical products (Aswin et al., 2023; Millatina et al., 2020).

METHODS

Types and Methods of Research

This study uses a quantitative approach with a causal associative type to examine the influence of independent variables, namely influencer marketing, electronic word of mouth (e-WOM), and brand awareness on the dependent variable of the decision to play Roblox in Mataram City. This approach allows for an empirical analysis of causal relationships through numerical data processed with multiple linear regression, in accordance with the characteristics of research that aims to identify causal influences between variables (Sugiyono, 2021; Sudaryono, 2023). The causal associative quantitative method was chosen because it is able to generalize findings from the sample to the population with a high level of statistical confidence, as applied in similar studies on digital consumer behavior (Emzir, 2022; Creswell & Creswell, 2023).

Data Analysis Instruments and Techniques

The main instrument for data collection was an online questionnaire based on Google Forms with a 5-point Likert scale, designed to measure variable indicators based on a literature review such as influencer credibility, e-WOM intensity, and brand recognition. The questionnaire was tested for validity using Pearson correlation and reliability using Cronbach's Alpha, where all items met the criteria (r count > 0.196 and alpha > 0.60), thus the instrument was declared feasible (Sugiyono, 2021; Sudaryono, 2023). Data analysis techniques included classical assumption tests (Kolmogorov-Smirnov normality, VIF multicollinearity < 10 , Glejser heteroscedasticity and scatterplot), multiple linear regression, simultaneous F-test, and partial t-test using the latest

version of SPSS software to test the hypothesis of significant influence (Emzir, 2022; Creswell & Creswell, 2023).

Population and Sample

The study population consisted of young active Roblox players in Mataram City who had played for at least the past three months, with an estimated number of thousands of users based on the level of online game penetration in the region. An initial sample of 100 respondents was selected using a purposive sampling technique with specific criteria such as the age of the young generation (18-25 years), Roblox playing experience, and social media activity. Ultimately, 97 respondents qualified for analysis after data screening (Sugiyono, 2021; Sudaryono, 2023). This non-probability sampling is in accordance with the nature of causal research, which requires respondents representative of the study phenomenon, as recommended in quantitative methodology (Emzir, 2022; Creswell & Creswell, 2023).

Research Procedures

The research procedure began with the development of an instrument based on a theoretical framework, followed by pre-research validity and reliability testing on trial respondents. Primary data was collected in September 2025 through an online questionnaire distributed via WhatsApp and social media over a two-week period, with informed consent for research ethics. The data were then cleaned and input into SPSS for a step-by-step analysis, ranging from descriptive analysis to hypothesis testing (Sugiyono, 2021; Sudaryono, 2023). The entire process followed standard quantitative research protocols to ensure the replicability and validity of the findings, with complete documentation for transparency (Emzir, 2022; Creswell & Creswell, 2023).

RESULTS AND DISCUSSION

Research Instrument Testing

Validity Test

Table 1. Summary of Validity Test Results

Influencer Marketing				
No	Statement	Rhitung	Rtable	Information
1.	Influencer Credibility (Trustworthiness) I trust the information and recommendations given by the gaming influencers I follow.	0.790	0.196	Valid
2.	Attractiveness The appearance and communication style of gaming influencers make me interested in watching their content.	0.736	0.196	Valid
3.	Expertise The gaming influencers I follow have good knowledge of Roblox games.	0.777	0.196	Valid
4.	Content–Audience Fit The content shared by gaming influencers aligns with my interest in Roblox games.	0.772	0.196	Valid

5.	Influencer Credibility (Trustworthiness)				
	Recommendations from gaming influencers influence my decision to try or play Roblox	0.837	0.196	Valid	
Electronic Word of Mouth (e-WOM)					
1.	Intensity				
	I often read reviews and comments about Roblox games on social media.	0.742	0.196	Valid	
2.	Credibility				
	I trust other users' reviews or comments about Roblox that I read online	0.624	0.196	Valid	
3.	Valence				
	Positive reviews about Roblox on social media influenced my view of the game.	0.788	0.196	Valid	
4.	Relevance				
	The information I found about Roblox on social media matched my needs or interests in the game.	0.669	0.196	Valid	
5.	Intensity				
	I sometimes share or comment on my experiences playing Roblox on social media.	0.694	0.196	Valid	
Brand Awareness					
1.	Brand Recognition				
	I can recognize the Roblox brand when I see its logo, icon, or appearance on social media.	0.637	0.196	Valid	
2.	Brand Recall				
	I can remember the Roblox brand even without seeing the logo or symbol.	0.713	0.196	Valid	
3.	Top of Mind Awareness				
	Roblox is the first game that comes to mind when I hear the term 'online game'	0.637	0.196	Valid	
4.	Familiarity				
	I feel familiar with Roblox because I often see or hear about this game in various media.	0.759	0.196	Valid	
5.	Familiarity				
	I am getting to know Roblox more because I have played the game or often play it.	0.717	0.196	Valid	
Playing Decision					
1.	Recognition of Needs				

	I play Roblox because I feel like I need some entertainment or a way to fill my free time.	0.664	0.196	Valid
2.	Information Search			
	Before playing Roblox, I searched for information about this game from influencers, friends, or social media.	0.685	0.196	Valid
3.	Alternative Evaluation			
	I compared Roblox with other games before deciding to play.	0.662	0.196	Valid
4.	Playing Decision			
	I decided to play Roblox because I felt this game best suited my interests.	0.824	0.196	Valid
5.	Satisfaction After Playing			
	I feel satisfied after playing Roblox and intend to continue playing it in the future.	0.757	0.196	Valid

Source: Processed Primary Data, 2025

The results of the validity test using Pearson correlation show that all statement items in the Influencer Marketing, Electronic Word of Mouth (e-WOM), Brand Awareness, and Playing Decision variables have a correlation coefficient value (r count) that is greater than the r table value (0.196). The r count value for the Influencer Marketing variable is in the range of 0.736–0.837, the e-WOM variable in the range of 0.624–0.788, the Brand Awareness variable in the range of 0.637–0.759, and the Playing Decision variable in the range of 0.662–0.824. These results indicate that all indicators in each variable are able to measure the research constructs accurately. Thus, all questionnaire items are declared valid and suitable for use in further analysis.

Reliability Test

Table 2. Reliability Test Results

No	Research Variables	Number of Items	Cronbach's Alpha	Critical Value	Information
1	Influencer Marketing (X1)	5	0.841	0.60	Reliable
2	e-WOM (X2)	5	0.740	0.60	Reliable
3	Brand Awareness (X3)	5	0.717	0.60	Reliable
4	Play Decision (Y)	5	0.770	0.60	Reliable

Source: Processed Primary Data, 2025

The results of the reliability test using the Cronbach's Alpha coefficient showed that all research variables had Alpha values above the minimum limit of 0.60, so all instruments were declared reliable. The Influencer Marketing variable had a Cronbach's Alpha value of 0.841, Electronic Word of Mouth (e-WOM) of 0.740, Brand Awareness of 0.717, and Playing Decision of 0.770. These results indicate that all statement items have good internal consistency and are suitable for use in further research analysis.

Classical Assumption Test

Normality Test

Table 3. Normality Test Results

One-Sample Kolmogorov-Smirnov Test		Unstandar dized Residual
N		97
Normal Parameters ^{a,b}		Mean ,0772020
		Standard 2,18401347
		Deviation
Most Extreme		Absolute ,075
Differences		Positive ,069
		Negative -,075
Test Statistics		,075
Asymp. Sig. (2-tailed)		,200c,d
a. Test distribution is Normal.		
b. Calculated from data.		
c. Lilliefors Significance Correction.		
d. This is a lower bound of the true significance.		

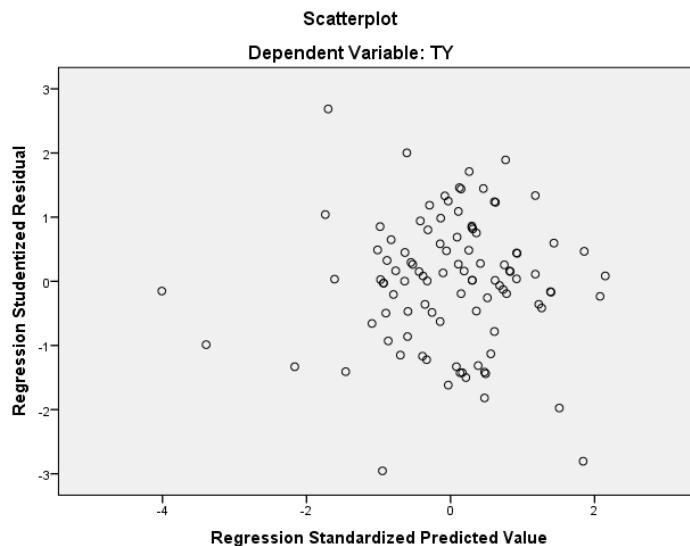
Source: Processed Primary Data, 2025

The results of the normality test using the One-Sample Kolmogorov–Smirnov method on the unstandardized residual value showed an Asymp. Sig. (2-tailed) value of 0.200, which is greater than the 0.05 significance level. This result indicates that the residual data is normally distributed, so the regression model has met the normality assumption and is suitable for use in regression analysis and further hypothesis testing.

Multicollinearity Test

Table 4. Multicollinearity Test Results

Model	Coefficients ^a						Collinearity Statistics	
	Unstandardized Coefficients			Standar dized Coeffici ents	t	Sig.		
	B	Std. Error	Beta					
1 (Const ant)	,478	1,444			,331	,741		
TX1	,230	,095	,208	2,423	,017	,533	1,877	
TX2	,435	,112	,391	3,900	,000	,390	2,564	
TX3	,308	,093	,296	3,307	,001	,489	2,043	


a. Dependent Variable: TY

Source: Processed Primary Data, 2025

The results of the multicollinearity test show that all independent variables have a Tolerance value above 0.10 and a Variance Inflation Factor (VIF) value below 10. The Influencer Marketing variable has a Tolerance value of 0.533 and a VIF of 1.877, e-WOM has a Tolerance

value of 0.390 and a VIF of 2.564, and Brand Awareness has a Tolerance value of 0.489 and a VIF of 2.043. These results indicate that there are no symptoms of multicollinearity, so the regression model meets the assumptions and is suitable for further analysis.

Heteroscedasticity Test Scatterplot Graph Analysis

Figure 1. Scatterplot Graph Analysis Results
Source: Processed Primary Data, 2025

Based on the results of the heteroscedasticity test using a scatterplot graph between the Regression Standardized Predicted Value and Regression Studentized Residual values, it can be seen that the data points are randomly distributed and do not form a specific pattern, either a conical, wide, or wavy pattern. In addition, the residual points are evenly distributed above and below the zero line. These results indicate that visually there are no symptoms of heteroscedasticity in the regression model. However, to ensure more objective test results, this study continued with a heteroscedasticity test using the Glejser method.

Glacier Test

Table 5. Glejser Test Results
Coefficients^a

Model	Standardize				
	Unstandardized		d		
	B	Std. Error	Beta	t	Sig.
1 (Constan t)	1,646	,844		1,949	,054
TX1	-,022	,056	-,056	-,397	,692
TX2	-,025	,063	-,066	-,396	,693
TX3	,050	,052	,140	,969	,335

a. Dependent Variable: ABS_RES

Source: Processed Primary Data, 2025

The results of the heteroscedasticity test using the Glejser method show that all independent variables have a significance value above 0.05, namely Influencer Marketing at 0.692, e-WOM at 0.693, and Brand Awareness at 0.335, which indicates no significant influence on the

absolute residual value (ABS_RES). This finding is reinforced by the results of the scatterplot test which shows a random distribution of residuals and does not form a particular pattern, so it can be concluded that the regression model does not experience symptoms of heteroscedasticity, has met the assumption of homoscedasticity, and is suitable for use in multiple linear regression analysis and hypothesis testing.

Statistical Analysis of Data

Multiple Linear Regression

Table 6. ResultsMultiple Linear Regression Analysis

Model	Coefficientsa			t	Sig.
	Unstandardized Coefficients	Standard ized Coefficie nts	Beta		
	B	Std. Error			
1	(Const ant)	-,397	1,362	-,292	,771
	TX1	,233	,091	,202	2,563 ,012
	TX2	,480	,102	,436	4,710 ,000
	TX3	,313	,083	,303	3,772 ,000

a. Dependent Variable: TY

Source: Processed Primary Data, 2025

Based on the results of data processing using multiple linear regression analysis, the regression equation model can be formulated as follows:

$$Y = -0.397 + 0.233 X_1 + 0.480 X_2 + 0.313 X_3$$

Where is Y is Decision to Play Roblox, X_1 is Influencer Marketing, X_2 is e-WOM, and X_3 is Brand Awareness. Based on this equation, it can be described as follows:

1. The constant value of -0.397 indicates that if the variables Influencer Marketing, e-WOM, and Brand Awareness are zero, then the Decision to Play is in a theoretical baseline condition without any influence from the independent variables.
2. The Influencer Marketing coefficient of 0.233 indicates that every one unit increase in Influencer Marketing will increase the Decision to Play Roblox by 0.233, assuming other variables are held constant.
3. The e-WOM coefficient of 0.480 indicates that every one unit increase in e-WOM will increase the Decision to Play Roblox by 0.480, so that e-WOM is the variable that has the most dominant influence.
4. The Brand Awareness coefficient of 0.313 indicates that every one unit increase in Brand Awareness will increase the Decision to Play Roblox by 0.313, assuming other variables remain constant.

Simultaneous Determination Coefficient Analysis

Table 7. ResultsSimultaneous Determination Coefficient Analysis
Model Summary

Model	R	R Square	Adjusted R Square	Standard Error of the Estimate
1	,832a	,693	,683	2,211
a. Predictors: (Constant), TX3, TX1, TX2				

Source: Processed Primary Data, 2025

Based on the results of the coefficient of determination analysis, a correlation coefficient (R) value of 0.832 was obtained, indicating a very strong relationship between Influencer Marketing, e-WOM, and Brand Awareness on the Decision to Play Roblox. The R Square (R^2) value of 0.693 indicates that 69.3% of the variation in the Decision to Play can be explained simultaneously by the three independent variables, while the remaining 30.7% is influenced by other factors outside the research model. The Adjusted R Square value of 0.683 also indicates that the regression model still has good ability to explain the variation in the Decision to Play after adjusting the number of variables.

Hypothesis Testing

Simultaneous Testing (F Test)

Table 8. Simultaneous Test Results (F Test)

ANOVA						
	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1025,078	3	341,693	69,891	,000b
	n					
	Residual	454,674	93	4,889		
	Total	1479,753	96			

a. Dependent Variable: TY
 b. Predictors: (Constant), TX3, TX1, TX2

Source: Processed Primary Data, 2025

Based on the F test results, the calculated F value was 69.891 with a significance level of 0.000 (<0.05), indicating that the regression model is suitable for use. These results indicate that simultaneously Influencer Marketing, e-WOM, and Brand Awareness have a significant effect on Roblox Playing Decisions. Thus, the simultaneous hypothesis (H4) is accepted, meaning that the three independent variables together have an important role in influencing Playing Decisions.

Partial Test (t-Test)

Table 9. Partial Test Results (t-Test)

Model	Coefficientsa			t	Sig.
	Unstandardized Coefficients		Standardized Coefficients		
	B	Std. Error	Beta		
1	(Constant)	-,397	1,362	-,292	,771
	TX1	,233	,091	,202	2,563 ,012
	TX2	,480	,102	,436	4,710 ,000
	TX3	,313	,083	,303	3,772 ,000

a. Dependent Variable: TY

Source: Processed Primary Data, 2025

Based on the results of the t-test, it is known that all independent variables have a positive and significant effect on the Decision to Play Roblox. The Influencer Marketing variable (TX1) has a calculated t value of 2.563 with a significance of 0.012 (<0.05), which indicates that Influencer Marketing has a significant effect on the Decision to Play. The e-WOM variable (TX2) shows a calculated t value of 4.710 with a significance of 0.000, so it can be concluded that e-WOM has a positive and significant effect, and is the variable with the strongest influence. Furthermore, Brand Awareness (TX3) has a calculated t value of 3.772 with a significance of 0.000, which indicates that Brand Awareness also has a positive and significant effect on the Decision to Play. Thus, all partial hypotheses in this study can be accepted.

Based on the results of data analysis carried out using the variables studied, the calculation results were obtained which can be explained as follows:

The Influence of Influencer Marketing (X1) on Gambling Decisions (Y)

The results of the study indicate that influencer marketing has a positive and significant effect on the decision to play Roblox. This is evidenced by the t-test results with a significance value of 0.000 (<0.05) and a regression coefficient of 0.233, indicating that improving the quality of influencer marketing can increase respondents' decision to play Roblox, assuming other variables remain constant. These findings indicate that credible and relevant influencers can influence interest in and decisions to play online games.

The results of this study differ from several previous studies, such as Oktaviani et al (2025) as well as Kencana & Krisprimandoyo (2024), which states that influencer marketing does not have a significant direct influence on consumer decisions and plays a greater role in increasing brand awareness. This difference is thought to be due to the different research contexts. In the online gaming industry, such as Roblox, influencers serve not only as promotional media but also as figures who demonstrate direct gaming experiences, making the message conveyed feel more authentic and relevant to the audience. Thus, this study confirms that the influence of influencer marketing is contextual, and in the context of online gaming, influencer marketing is a significant factor in influencing gaming decisions.

The Influence of Electronic Word of Mouth (e-WOM) (X2) on the Decision to Play (Y)

The results of the study indicate that Electronic Word of Mouth (e-WOM) has a positive and significant effect on the Decision to Play Roblox. This is evidenced by the results of the t-test with a significance value of 0.000 (<0.05) and a regression coefficient of 0.480, which is the largest coefficient compared to other independent variables. These findings indicate that e-WOM is the most dominant factor in influencing respondents' decisions to play Roblox. Reviews, comments, and recommendations spread on social media can shape perceptions, increase interest, and encourage playing decisions, especially when the information received is positive, relevant, and intense.

The results of this study differ from several previous studies, such as Saputra et al (2024) as well as Millatina et al (2020), who found that e-WOM had no significant effect on purchasing decisions for physical products. This difference is thought to be due to differences in the research context and the characteristics of the objects studied. In the context of community-based online games like Roblox, playing decisions are heavily influenced by experience, social interactions, and recommendations from fellow players, so e-WOM is considered more credible and relevant. Thus, this study confirms that the influence of e-WOM is contextual and that in the online gaming industry, e-WOM plays a strong and direct role in influencing playing decisions.

The Influence of Brand Awareness (X3) on the Decision to Play (Y)

The results of the study indicate that brand awareness has a positive and significant effect on the decision to play Roblox. This is evidenced by the results of the t-test with a significance value of 0.000 (<0.05) and a regression coefficient of 0.313, which indicates that the higher the level of awareness of the respondents towards the Roblox brand, the greater their tendency to decide to play, assuming other variables remain constant. This finding suggests that recognition and familiarity with the game brand play a significant role in shaping the decision to play.

The results of this study differ from several previous studies, such as Aswin et al (2023) and Wati et al (2025), which states that brand awareness does not significantly influence purchasing decisions for physical products and e-commerce. This difference is thought to be due to differences in the research context and the characteristics of the decisions made. In the context of online games like Roblox, playing decisions are more influenced by entertainment experience, brand familiarity, and community interaction than by purely rational considerations. Thus, this study confirms that the influence of brand awareness is contextual and that in the online gaming industry, brand awareness plays a significant role in influencing playing decisions.

CONCLUSION

This study concludes that influencer marketing, electronic word of mouth (e-WOM), and brand awareness simultaneously have a positive and significant influence on the decision to play Roblox in Mataram City, with a coefficient of determination of 69.3 percent. Partially, all three independent variables show a positive and significant influence, with e-WOM having the largest contribution (coefficient of 0.480), followed by brand awareness (0.313) and influencer marketing (0.233). These findings confirm the research hypothesis and fill a gap in previous studies that often found insignificant influences in the context of physical products, emphasizing the crucial role of digital strategies in community-based games like Roblox in non-metropolitan areas.

However, this study has limitations such as the sample size of 97 young respondents in Mataram, which may limit generalizability to the wider population or other regions, and the reliance on self-report data via an online questionnaire. Future research suggests expanding the sample, incorporating moderating variables such as social media usage intensity, or employing mixed-methods approaches for in-depth exploration. Practically, these results provide implications for Roblox developers and marketers to optimize influencer collaboration, drive positive e-WOM through local communities, and increase brand awareness through relevant content on social media to strengthen game adoption in the Indonesian regional market.

SUGGESTION

The results of this study demonstrate the important roles of influencer marketing, e-WOM, and brand awareness in driving Roblox play decisions. Therefore, game developers are advised to optimize their digital marketing strategies by selecting credible influencers, actively managing communities to encourage positive e-WOM, and consistently strengthening brand awareness.

For players, the results of this study are expected to be a consideration in making wiser gaming decisions by not only relying on influencer recommendations or online reviews, but also adapting them to personal preferences.

This study has limitations in the number of respondents and variables studied, so further research is recommended to expand the object and add other variables to obtain more comprehensive results.

REFERENCE

App Annie. (2024). State of mobile 2024. <https://www.appannie.com/en/insights/market-data/state-of-mobile-2024>

- Aswin, U.R., Hidayat, D., & Gustina, L. (2023). Analysis of the influence of brand awareness, brand associations, and lifestyle on the iPhone purchase decision process (Consumer survey in Padang City). *Journal of Management and Business*, 4(1), 33–40.
- Creswell, J. W., & Creswell, J. D. (2023). Research design: Qualitative, quantitative, and mixed methods approaches (6th ed.). SAGE Publications.
- Emzir. (2022). Quantitative research methodology. Pustaka Setia.
- Febrianto. (2025). The influence of social factors on game user-generated content. *Indonesian Journal of Computer Science*.
- Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? *Journal of Interactive Marketing*, 18(1), 38–52. <https://doi.org/10.1002/dir.10073>
- IMARC Group. (2024). Indonesia gaming market size, share, trends and forecast by device type, platform, revenue type, type, age group, and region, 2025-2033. <https://www.imarcgroup.com/indonesia-gaming-market>
- Keller, K. L. (2013). Strategic brand management: Building, measuring, and managing brand equity (4th ed.). Pearson.
- Kencana, WG, & Krisprimandoyo, DA (2024). The influence of influencer marketing on consumer decisions. *Journal of Management and Business (JOMB)*, 6(4), 1812–1824. <https://doi.org/10.31539/jomb.v6i4.10805>
- Kim, J., & Kim, M. (2022). The rise of influencers in social networks as a new marketing channel: The role of psychological well-being and perceived social responsibility by consumers. *International Journal of Environmental Research and Public Health*, 19(4), Article 1985.
- Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson.
- Millatina, AN, Hamidah, S., & Herianingrum, S. (2020). The effectiveness of Instagram and e-WOM (electronic word of mouth) media on purchasing interest and purchasing decisions. *Journal of Islamic Economics and Business*, 5(1), 101–115.
- Newzoo. (2024). Global games market report 2024. <https://newzoo.com/resources/trend-reports/newzoo-global-games-market-report-2024-free-version>
- Oktaviani, FN, Wilujeng, IP, & Siswanto, E. (2025). The influence of influencer marketing and content marketing on purchase intention through brand awareness: A study on Pocari Sweat Instagram. *Journal of Economics and Business*, 8(1). <https://doi.org/10.32877/eb.v8i1.2311>
- Pratiwi, D., & Sari, R. (2023). Roblox characteristics in user social interactions. *Digital Media Journal*.
- Saputra, S., Jasa, RH, & Batam International University. (2024). The influence of eWOM information characteristics and consumer behavior on smartphone purchase intentions. *Journal of Management*, 13(1), 1–19.
- Statista. (2025). Daily active users (DAU) of Roblox games worldwide from 4th quarter 2018 to 2nd quarter 2025. <https://www.statista.com/statistics/1192573/daily-active-users-global-roblox>
- Sudaryono. (2023). Quantitative research methods for economics and business. Student Library.
- Sugiyono. (2021). Quantitative, qualitative, and R&D research methods. Alfabeta.

- Wati, R., Indrawati, H., & Syabrus, H. (2025). The influence of brand awareness and product quality on purchasing decisions in e-commerce (Case study on students of the Social Sciences Education Department, University of Riau). *JIIP - Scientific Journal of Educational Sciences*, 8(2), 1455–1463. <https://doi.org/10.54371/jiip.v8i2.7069>